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Calculation of the oblique shock wave of real gases is a difficult and time consuming 
problem because it involves numerical solution of a set of 10 equations, two of which 
(i.e., the equation of state and enthalpy function)-- i f  available~are of a very complicated 
algebraic form. The present work presents a generalized method for calculating oblique 
shock waves of real gases, based on the Redlich-Kwong equation of state. Also described 
is an exact method applicable when the exact equation of state and enthalpy function of 
a real gas are available. Application of the generalized and the exact methods in the case 
of real air showed that the former is very accurate and at least twenty times faster than 
the latter. An additional contribution of the study is the derivation of real gas oblique 
shock wave equations, which are of the same algebraic form as the well known ideal gas 
normal shock wave relations. 
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Introduction 

Oblique shock waves, i.e., pressure discontinuities inclined to 
the direction of the oncoming compressible flow, may occur in 
almost all supersonic flow patterns of practical significance. 
With reference to Figure I, C1 and C2 denote the stream 
velocities entering and leaving the oblique shock wave, respec- 
tively, ~ is the flow deflection angle and a, a-6 are the angles 
between the shock wave and the vectors Cx, C2, respectively. 
The components of the velocities Cx and C2 resolved in the 
tangential and normal directions to the oblique shock wave are 
denoted by C~t, C2,, Ct,, and C2,, as shown in Figure 1. If 
p, v, T, and h stand for the fluid pressure, specific volume, 
temperature and specific entlialpy, respectively, and subscripts 
1 and 2 denote quantities upstream and downstream the shock 
wave, the following equations are valid: 

Equation of state: 

p=p(v, T) (1) 

Enthalpy function: 

h = h(v, T) (2) 

Continuity of mass: 

U2Cln = u1C2n (3) 

Conservation of momentum in the normal and tangential 
directions to the oblique shock wave: 

Pl + C2Jvl =P2 + C2,,/v2 (4) 

C.=C2, (5) 
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Conservation of energy: 

hi + C2J2 = h2 + C2J2 (6) 

Velocity components: 

CIt=C t COS (7 (7) 

C1. = C1 sin a (8) 

C2t = C2 c o s ( a -  6) (9) 

C2. = C2 s i n ( a -  ~) (10) 

Equations (1) to (10) comprise a set of 10 equations for the 
10 unknowns P2, v2, 7'2, h2, C2, C2., C2t, C1., Clt and a in 
terms of the known upstream conditions Pl, vl, Tt, hz, Ct and 
the known flow deflection angle & In the case of a real gas, 
solution of the above equation set is difficult and can be 
obtained only numerically, mainly because of the complexity 
of Equations 1 and 2. Thus, shock wave tables are available 
for only a few real gases, usually restricted to the limiting case 
of the normal shock wave (i.e., for a = 90 °, ~ = 0), as for example 
for real a i r :  The lack of oblique shock wave tables for most 

~ Czt 

Figure I Stream velocities C 1 and C= entering and leaving the 
oblique shock wave, respectively 
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real gases is due either to the difficulty of solving the 10-equation 
set or to the lack of Equations 1 and 2. 

Here, a generalized method for calculating the oblique shock 
wave of real gases is presented. The method is based on the 
Redlich-Kwong equation of state 2 and is applicable to real 
gases for which the equation of state 1 and the enthalpy function 
2 are not available. The Redlich-Kwong equation has been 
selected among other generalized equations of state (i.e., the 
Lee-Kesler, 3 the Redlich-Kwong-soave, 4 the Pitzer, 5 etc. 
correlations) because of its simplicity and also because it gives 
explicit functions facilitating the calculation of the oblique 
shock wave. 

In order to evaluate the above generalized method with 
respect to accuracy and economy, a numerical algorithm has 
been developed for solving the set of Equations 1 to 10 in the 
case when the exact equation of state I and the exact enthalpy 

function 2 are available. Application of this algorithm in the 
case of real air showed that the generalized method is both 
accurate and reduces drastically computation time (by at least 
95%). Therefore the generalized method is recommended even 
if the exact forms of Equations 1 and 2 are available. 

Apart for the method presented, an additional contribution 
of the present study is the derivation of real gas oblique shock 
wave equations, which are of the same form as the well known 
ideal gas normal shock wave equations, 6'7, as shown in Table 1 
and explained iv the following section. 

Real  gas o b l i q u e  shock  w a v e  e q u a t i o n s  

The isentropic expansion of a real gas may be described very 
accurately by the following empirical relations, s which are of 

Table I Comparison of the derived real gas/shock wave equations with the corresponding ideal gas normal shock wave equations 

Ideal gas normal shock wave I-6,7] Real gas oblique shock wave 

p= 1 +kM~ (T.1) p=_ l+kp,~M~sin=a (T.5) 
p, 1 +kM'~= p, 1 +kp,=M'~=sina(<7-~) 

1 + ~ - - ~  r 1 +kM~21 (T.2) (T.6) v= v2 
l+k~M~sin=(~-~)/L k,,~M~sin=cr / v, 1+k-1 El +kM~d ; =  1 +k~M=l sin=¢ 

2 

1+ k -1  ~ ,  
T, 2 (T.3) T~=[ l+k~M=Isin=°" (T.7) l+kp,2M~2sin=(~-~)/l_ M, sina _l/Z~'p, d r, l+k-lM~= 

2 

M111 +k-12 M~I'/= M=[ 1+k-12 ~] ' / '  rM,[l+nM~-~sin~lr k,, 1 rM=[ l+nM~-~s in (~ -~ ) l r  k~,= 1 
1 +kM~ - 1 +kM~= (T.4) L- 1 ~ - ~ ~  JLm--,~J=L 1 ~  /Lm-~_l (T.8) 

Notat ion R Gas constant 
s Specific entropy 

A, B, C Coefficients of the c~ polynomial T Temperature 
A~j, B~ Constants in Equations 42 and 44 v Specific volume 
a, b Parameters in the Redlich-Kwong equation Z Compressibility factor 
ap, aT, a v 
g, d, e, r 
l, m, n 
C 
Cp 

C u 

F 
h 
J 
k 
kp~ 

M 
Mu, N U 
Off' Qu, ql 
p 

Exponents and coefficients in Equations 11 to 
17 
Velocity 
Constant pressure heat capacity 
Constant pressure heat capacity in the ideal gas 
state 
Constant volume heat capacity 
Area 
Specific enthalpy 
Impulse function 
Ideal gas isentropic exponent, Cp/Cv 
Real gas isentropic exponent corresponding to 
the pair of variables p, v 
Mach number 
Constants in Equations 43 and 44 
Constants in Equations 45 and 43 
Pressure 

Greek symbols 
= Sound velocity 

Flow deflection angle 
Av Volume increment 
p Density 
a Angle between shock wave and velocity C1 

Subscripts and superscripts 
c Denotes values at the critical point 
n Denotes direction normal to the shock wave 
ref Denotes a reference value 
t Denotes direction tangential to the shock wave 
0 Denotes stagnation conditions 
1, 2 Denote values upstream and downstream the 

shock wave, respectively 
* Denotes critical conditions (M = 1) 
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the same algebraic form as the corresponding ideal gas equations, 
but with different coefficients and exponents, i.e., 

p/po=(1 +nM2) ~" (11) 

TIT o = (1 + nM2) =r (12) 

relY= (1 +nM2) =v (13) 

F*/F = mM(1 + nM2) a (14) 

C/2C* =mM(l  +nM2) a (15) 

C2/2VPo = mM(1 + nM2) e (16) 

J*/J = mM(1 + nM2 y/(1 + lM 2) (17) 

where M is the Mach number; subscripts 0 and * refer to 
stagnation conditions and critical values (M= I), respectively; 
and F and J are the cross-sectional flow area and the impulse 
function, respectively. The values of coefficients l, m, n and 
exponents ap, ar, ay, g, d, e, and r for various real gases, 
including steam, air, ammonia and refrigerants R12 and R22, 
may be found in Ref. 8. 

Calculation of Mach number, M, requires knowledge of the 
real gas sound velocity, ct, which is calculated as 9 

ot (c~P~°'5 [ V2(gP~ ]°" I v2(Cp~(t~P ~ 1 °'s 
=\~p), =L- \~vv/~j = L -  \~) \~v / rJ  
= (kpvpv) °'5 = (Zkp~RT) °'5 (18) 

where Z=pv/RT is the compressibility factor, and kp~ is a real 
gas isentropic exponent introduced in previous publications ~°-~z 
and given by 

kp~= _v_c,(Op) (19) 
p c--~ ~v r 

By use of the sound velocity expression 18, the normal 
velocity components C~, and C2, become 

C1,=C1 sin a=Mffq sin a=Ml(kpvlptvl) °'5 sin a (20) 

C:. = C2 s in (a -  6) = M2~t 2 s in (a -  6) = M2(kpv2P21)2) 0"5 sin(tr- 6) 
(21) 

and substitution of C~. and C2. from the above equations into 
the continuity Equation 3, yields after rearrangement 

V2 k , v 2 P 2 [ M 2 s i n ( t r - - ~ ) 1 2  

vl kp~l p i E  M-~ls~nna J (22) 

Momentum Equation 4, combined with continuity Equation 
3 and Equation 8, gives 

P2 _ 1 -t 1 - (23) 
Pl PlY1 
Substitution of Cl=Mffq=Ml(kp~lptvl) °~ and v2/vl from 
Equation 22 into Equation 23 yields, after rearrangement, the 
real gas oblique shock wave equation (T.5), given in Table 1. 
Comparison of this equation with the corresponding ideal gas 
normal shock wave equation (T.1), given in the same table, 
shows that both equations have the same general form. They 
differ in that, in the case of the real gas, two different isentropic 
exponents kpo~ and kp~2 appear, instead of the constant ideal 
gas isentropic exponent k. 

With reference to Table 1, the real gas oblique shock wave 
relation T.6 corresponding to the ideal gas normal shock 
wave equation, T.2, may be derived by substitution of P2/P~ 
from Equation T.5 into Equation 22. Similarly, the real gas 
equation, T.7, which corresponds to the ideal gas Equation T.3 is 
derived by substituting p2/p~ and v2/v~ from Equations T.5 and 
T.6, respectively, into relation T2/TI=(Z~/Z2)(p~/p~)(v2/v~). 
Finally, the real gas equation, T.8 corresponding to the ideal 

gas relation T.4 is found by substitution of v2/vl and C2/C~ 
from Equations T.6 and 15, respectively, into the continuity 
equation v2/vl = C2JC1, = ( C2/C l )[sin(a-6)/sin a]. 

Real gas ob l ique  shock w a v e  by use of  the  
R e d l i c h - K w o n g  e q u a t i o n  

Solution procedure 

The Redlich-Kwong equation of state 2 has been success- 
fully employed in Ref. 13 for calculating the one-dimensional 
isentropic flow of real gases. It may be written as 

RT a 1 
p = - -  (24) 

v-b  T °'5 v(v+b) 

where R is the gas constant, and parameters a and b are 
calculated in terms of pressure Pc and temperature T c at the 
critical point of [he gas under examination; i.e., 

a=O.4278R2T2¢S/p c (25) 

b=O.O867RTJpc (26) 

The enthalpy function h and the sound velocity expression, 
• , based on the Redlich-Kwong equation, 24, may be expressed 
as 

h=AT+BTE+C-Ta2 3 .v.3a [ v ~ l  -hrefq- ~ In -RT+pv (27) 

I RT a(2v+b) 
e = v  (v_b)a rO.Sv2(v+b)2 

F R a -I 2 7 °'~ 
T 4 - 

kv-b  2T"Sv(v+b)J ] ( 2 8 )  
-~ - - - ~  3 ~ ~  v 71 4b-e .  lnL  -bJ j 

where hre f is a reference enthalpy and A, B, C are the coefficients 
of the polynomial giving the constant pressure heat capacity, 
c~, in the ideal gas state, c'p=A +BT+ CT 2. Values of A, B, C 
for various real gases may be found in Ref. 14. 

The conservaton of momentum equation, 4, may be written 
by use of continuity Equation 3 and Equation 8 as 

[-C1 sin a7 ~, 
p2-pl=L~T-j ivy-v2) (29) 

Substitution of P2 from the Redlich-Kwong equation, 24, into 
Equation 29 gives after rearrangement: 

[ ~ [  C2 sin2 °" , , ] 7 ~ 0  5 
(T°'5) 3 -t- Pl -t ..~ iV1 -- V2//I 12' 

Vl J J  

ra b-v~ 4 

which is a cubic equation with respect to T °'5 and admits of 
the following solution: 

0 
T °'s =2Q °'5 c o s -  (31) 

3 

where 

Q v2-b[  C2sin2cr 1 
= ~ - -  p,q v 2 (vl-v2) (32) 

cos 0=  a(b-v2) (33) 
2Rv2(t~ 2 -F b)Q 1"5 
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For the calculation of the unknown v2 contained in Equation 
31, conservation of energy Equation 6 may be employed, which 
by use of continuity Equation 3 and Equation 8 becomes 

7 I h2-h ,=C~ 2 # 1 - ~ j  (34) 

Substitution of h 2 and ht from the enthalpy function, Equation 
27, into Equation 34, and also substitution of P2 from the 
Redlich-Kwong equation 24 yields 

B 2 C 3 3 Rv2T2 
(A-R)(T  2 -  T , ) + ~  (T2 2 -  T , ) + ~  (T 2 -  TI)-+ 

~ b P2 
a 

TO.5(v2+b) PlY1 

3 a [  [v2--~bl [ v l - -~b l ]  
+ - -  T2°.5 In - Ti-O-5 In 

2b 

_C~sin 2 o r , _ <  ,35, 
2 L ,,U 

Finally, substitution of T 2 from Equation 31 into Equation 
35, yields an equation containing only unknowns v2 and ~. 
Therefore, if a value is given to the angle a, then v 2 may be 
calculated by solving numerically the equation. Although the 
flow deflection angle 6 is usually known and ~ is computable, 
in the present procedure a is taken as known and t~ is calculated. 
Obviously, this interchange of variables, is made to facilitate 
the numerical procedure and does not destroy generality. Thus, 
the procedure for calculating the oblique shock wave of real 
gases, may be summarized as follows: 

(a) Substitute T2 from Equation 31 into Equation 35, give 
a value to a (0°<a~<90 °) and calculate v2 by solving 
numerically the resulting equation. 

(b) Calculate T 2 from Equation 31 and P2 from the Redlich- 
Kwong equation 24. 

(c) Calculate velocities CI., C~, and C2t from Equations 8, 7, 
and 5, respectively, and C2. from the continuity equation 3. 

(d) Calculate the flow deflection angle 6 from relation 

= a -  arctan C2. (36) 
C2t 

which results by combining Equations 9 and 10. 
(e) Calculate C2 from Equation 10. 
(f) Calculate sound velocities a I and ~2 from Equation 28 and 

then Mach numbers Mx = C1/al and M 2 = C2/t~ 2. 

.0 

Z&8 

0.6 

0.4 

0.2 

0.0 

-90 o = 

REAL AI R 
(stagn. cond. po1=10 bar, Tol=700 K) 
Generatized method 

• Exact solution 
I I I I I I I i I 

2 3 4 5 
M1 

Figure 2 Calculated Mach number M=, after the shock in terms of 
the Mach number M v before the shock, for various values of the 
angle a 

O 

90, 

80 

70 

60 
0 

Figure 3 

REAL AIR (stagn. cond. po(-10bar, Tot=700K) 
Generatized method 

• Exact sotution 

M1=1.23 1.72 2.16 2.60 3.68 5.52 

I I I I I I I I I 

10 20 30 40 50 
6 (°) 

Angle a in terms of the flow deflection angle 6, with Mach 
number M 1 as a parameter 

Appl icat ion for the real air 

Application of the generalized (Redlich-Kwong based) method 
outlined above is made, as an example, in the case of real air. 
The data 15 required are the critical pressure Pc = 37.66 bar and 
temperature T¢ = 132.52 K, the air constant R = 287.22 J/kg K 
and the coefficients of the c~ polynomial A = 1.0115846 x 103, 
B= --1.0183346 x 10 -1, C=2.7676571 x 10 -4, valid for tem- 
peratures 100-750K. Extracts from the results obtained are 
shown in Figures 2 to 5, which correspond to stagnation 
pressure and temperature Pol=10bar and Tot=700K, 
respectively. 

Figure 2 shows the calculated Math number M2, after the 
shock, in terms of the Mach number Mr, before the shock, with 
the angle a a s  a parameter. Figure 3 s h o w s  the angle tr as a 
function of the deflection angle 6 for various values of M 1. The 
ratios Pl/P2, v2/vl and TI/T2 in terms of MI for ~r = 70-90 ° are 
given in Figure 4. Lastly, Figure 5 shows the calculated 
Rankine-Hugoniot relation for the shock wave of real air. 

In all figures mentioned above, the results of the generalized 

1.0 
• REAL AIR 

 tagn cond po:= ,Tot700 K) 
0.8 '[~ IGeneratized method 

L~ 
ct so[ut ion 

>-'0.4 ~%N. "~\o'=70 ° 

0.0 ' 
2 3 4 5 M1 6 

Figure 4 Calculated ratios Pl/P=, v=/v, and T~/T 2 in terms of the 
Mach number M v for a=70°-90 ° 
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Figure 5 
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70 
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6 
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- -  Generatize0 method~"l-rTJ 
0 Exact sotution I l l  I I I  

I I  
f/ ! 

.ffl 
IIBI 
IF  

11 

/ 
72 4 6 

Vl/V2 

t 

i 
810 

Calculated Rankine-Hugoniot relation 

method developed are represented by solid lines. The point 
symbols Correspond to the exact solution (see the next section) 
which is in excellent agreement with the generalized method. 

E x a c t  s o l u t i o n  o f  t h e  rea l  gas  o b l i q u e  
s h o c k  w a v e  

Solut ion procedure 

In this case the exact equation of state 1 and the enthalpy 
function 2 for the real gas considered should be available. 
Analytical expressions for the constant volume and constant 
pressure heat capacities cv and c v, and for the sound velocity 

may be derived by using the exact equation of state p = p(v, T) 
and relations 14a6 

c~=c'p-R + T \~-T~ ] ~ dv (37) 

\~T}v / \aV, ] r  

ct=[ - v °  c-n \cnv / rJ ] ° "  (39) 

Substitution of P0 and h0 from the exact equation of state 
P2 = pz(vo, To) and enthalpy function h0 = he(re, To) into Equa- 
tions 29 and 34, respectively, yields a set of two equations with 
two unknowns v2 and To (the angle a is considered known, as 
in the previous method); i.e., 

fi(v2, 7'2)=0 (40) 

[2 (122, To)=0 (41) 

The above set of equations is usually very complicated and 
may be solved only numerically. Various alternative algorithms 
may be devised for this purpose, or existing computer codes 
may be used. For example, the following steps (with appropriate 
refinements) may be followed: 

(a) Take vo=vl-Av,  whore Av is a volume increment (i.e., 
Av = vlllO0). 

(b) Numerical solution of Equation 40 yields a value T[ for 
the unknown temperature T o . 

(c) Numerical solution of Equation 41 yields a value T[ for 
the unknown T o . 

(d) If T[  = T[, then the solution has been obtained. If T[  ~ T" 2 
decrease v0 by Av and repeat from step (b) .  

On the basis of the above analysis, the exact solution 
procedure for the real gas oblique shock wave may be sum- 
marized as follows: 

(1) Give a value to a (0°<a~<90 °) and calculate v0 and To by 
solving numerically the set of Equations 40 and 41 using 
the algorithm outlined above or any alternative one. 

(2) Calculate C1,, CI,, C2,, Co,, & and Co from Equations 8, 
7, 5, 3, 36, and 10, respectively. 

(3) Calculate sound velocities ~ and a0 from Equation 39 and 
then Mach numbers M1 = Cx/~I and M2 = Co/ao. 

Appl icat ion for the real air 

Application of the procedure outlined above is made in the 
case of real air for which the exact equation of state and enthalpy 
function are available; t5 i.e., 

s T T - 1 /T \ -2-1 /v  \i 
.(., z 

,:eL w w 
(42) 

(7] h(v, T)=pv+RT¢ i=o qi -~ 

7 T -1 T -2 v i 
+ , <  z 

1=eL \T<] \ T J  Jkv / 
(43) 

where the values of the coefficients A, q, and M may be found 
in Ref. 15. Equations 42 and 43 are valid for 223 K ~< T~< 1523 K. 
Equations (37) and 38 take now the forms 

(7] cv(v, T)= R Bi 
i = 0  T¢¢ 

7 T -2 T -3 vc i 
+g y, [N,i( '- ' /  +NJ-  -I(--1'1 (44) 

1=eL \ T J  t T J  Jkv ] 

cn(v T)=cv+R x 

r _ _  L--o/=~ co.+o,,( TI Te)-2 + 03i ( TIT¢)-s][ (v Jr ) - la i / °  ~j 

7 
Z [Qli + Q2i(r/r¢)- 1 + Q3I(T/T¢ )- 2 _}. Q41(T/Tc )- 3][(vjv ) _ 11i 
i=o 

(45) 
where the values of the coefficients B, N, O, and Q may be 
found in Ref. 15. Differentiation of Equation 42 with respect 
to v yields 

OV]r 
s T T -1  T - 2  

z 
1=o L \ T J  \ T J  \T ,]  J 

(46) 

Substitution of cv, c v and (ap/&)r from Equations 44, 45, and 
46, respectively, into Equation 39 yields the sound velocity 
expression = = #(v, T) for real air. 

Following the exact solution procedure outlined earlier, the 
oblique shock wave of real air has been calculated under various 
conditions (stagnation pressure and tc~aperature Pol = 10-40 bar, 
To1 = 500-1000 K, respectively). The computer time required 
was at least 20 times longer than that required for the 
generalized (Redlieh-Kwong based) method. Extracts of the 
results (for stagnation conditions Po~ = 10 b a r ,  To~ = 7 0 0  K )  are 
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shown in Figures 2-5 (point symbols) together with the 
generalized solution (solid line), which is in excellent agreement. 
An additional test (not appearing in the figures) of the correct- 
ness of both solutions has been made by comparison with the 
exact solution of Ref. 1, which is available only for the limiting 
case of the normal shock wave (¢ = 90 °, ~ = 0 °) of real air. In the 
cases examined, negligible differences of less than 0.1% appeared 
between the generalized and the exact solutions, while the two 
exact solutions did not differ at all, as expected. 

Although experimental validation of the procedure was not 
easy owing to lack of suitable oblique shock wave data, the 
exact solution is considered to be very accurate since it is based 
on the experimentally derived exact equation of state and 
enthalpy function of real air. 

C o n c l u s i o n  

The generalized (Redlich-Kwong based) method developed for 
calculating oblique shock waves of real gases seems to be very 
accurate, as deduced by the comparisons, shown in Figures 2 
to 5, with the exact solution in the case of real air. The accuracy 
of the method is expected to be inferior in the region near the 
critical point, where the accuracy of the Redlich-Kwong 
equation diminishes (i.e., for reduced pressure and temperature 
Pr = P/Pc = 1 - 1.1, T r = T/Tc = 1 - 1.05 the error of the Redlich- 
Kwong equation reaches 15 %). The accuracy of the generalized 
method developed is limited only by the accuracy of the 
Redlich-Kwong equation of state. Although comparisons for 
other real gases (apart from air) have not been made, it is 
obvious that the present generalized method is accurate for 
those real gases whose behavior is well approximated by the 
Redlich-Kwong equation. 

The calculations made for the real air showed also that the 
generalized method is at least 20 times faster than the exact 
solution. Therefore, although the method has been initially 
developed for real gases with insufficient thermodynamic infor- 
mation, it is recommended even if the exact equation of state 
and enthalpy function are available. 

Worth noting are the derived real gas oblique shock wave 

equations, which retain the same algebraic form of the well- 
known ideal gas normal shock wave equations. 
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